Article ID Journal Published Year Pages File Type
1841586 Nuclear Physics B 2009 28 Pages PDF
Abstract

We study the steady state motion of bubble walls in cosmological phase transitions. Taking into account the boundary and continuity conditions for the fluid variables, we calculate numerically the wall velocity as a function of the nucleation temperature, the latent heat, and a friction parameter. We determine regions in the space of these parameters in which detonations and/or deflagrations are allowed. In order to apply the results to a physical case, we calculate these quantities in a specific model, which consists of an extension of the Standard Model with singlet scalar fields. We also obtain analytic approximations for the wall velocity, both in the case of deflagrations and of detonations.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,