Article ID Journal Published Year Pages File Type
1842015 Nuclear Physics B 2014 20 Pages PDF
Abstract

Motivated by the possibility to explain dark matter abundance and strong electroweak phase transition, we consider simple extensions of the Standard Model containing singlet fields coupled with the Standard Model via a scalar portal. Concretely, we consider a basic portal model consisting of a singlet scalar with Z2Z2 symmetry and a model containing a singlet fermion connected with the Standard Model fields via a singlet scalar portal. We perform a Monte Carlo analysis of the parameter space of each model, and we find that in both cases the dark matter abundance can be produced either via freeze-out or freeze-in mechanisms, but only in the latter model one can obtain also a strong electroweak phase transition required by the successful electroweak baryogenesis. We impose the direct search limits and consider systematically the possibility that the model produces only a subdominant portion of the dark matter abundance. We also study the renormalization group evolution of the couplings of the model to determine if the scalar sector of the model remains stable and perturbative up to high scales. With explicit examples of benchmark values of the couplings at weak scale, we show that this is possible. Models of this type are further motivated by the possibility that the excursions of the Higgs field at the end of inflation are large and could directly probe the instability region of the Standard Model.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,