Article ID Journal Published Year Pages File Type
1842259 Nuclear Physics B 2013 14 Pages PDF
Abstract

We discuss how the higher-derivative Starobinsky model of inflation originates from N=1N=1 supergravity. It is known that, in the old-minimal supergravity description written by employing a chiral compensator in the superconformal framework, the Starobinsky model is equivalent to a no-scale model with F-term potential. We show that the Starobinsky model can also be originated within the so-called new-minimal supergravity, where a linear compensator superfield is employed. In this formulation, the Starobinsky model is equivalent to standard supergravity coupled to a massive vector multiplet whose lowest scalar component plays the role of the inflaton and the vacuum energy is provided by a D-term potential. We also point out that higher-order corrections to the supergravity Lagrangian represent a threat to the Starobinsky model as they can destroy the flatness of the inflaton potential in its scalar field equivalent description.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,