Article ID Journal Published Year Pages File Type
1842445 Nuclear Physics B 2008 28 Pages PDF
Abstract

The generalized (1+1)-D(1+1)-D non-linear Schrödinger (NLS) theory with particular integrable boundary conditions is considered. More precisely, two distinct types of boundary conditions, known as soliton preserving (SP) and soliton non-preserving (SNP), are implemented into the classical glNglN NLS model. Based on this choice of boundaries the relevant conserved quantities are computed and the corresponding equations of motion are derived. A suitable quantum lattice version of the boundary generalized NLS model is also investigated. The first non-trivial local integral of motion is explicitly computed, and the spectrum and Bethe ansatz equations are derived for the soliton non-preserving boundary conditions.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,