Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1842718 | Nuclear Physics B | 2007 | 44 Pages |
Abstract
We show that it is possible to formulate the most general first-class gauge algebra of the operator formalism by only using BRST-invariant constraints. In particular, we extend a previous construction for irreducible gauge algebras to the reducible case. The gauge algebra induces two nilpotent, Grassmann-odd, mutually anti-commuting BRST operators that bear structural similarities with BRST/anti-BRST theories but with shifted ghost number assignments. In both cases we show how the extended BRST algebra can be encoded into an operator master equation. A unitarizing Hamiltonian that respects the two BRST symmetries is constructed with the help of a gauge-fixing boson. Abelian reducible theories are shown explicitly in full detail, while non-Abelian theories are worked out for the lowest reducibility stages and ghost momentum ranks.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematical Physics
Authors
I.A. Batalin, K. Bering,