Article ID Journal Published Year Pages File Type
184275 Electrochimica Acta 2015 7 Pages PDF
Abstract

•The electrochemical reaction kinetics of the Ni/NiO anode was studied for the first time.•Charge transfer resistance is main contribution to total resistance during discharge process.•The slow growth of the SEI film is responsible for the capacity fading upon cycling.•Some promising strategies to optimize NiO anode performance were summarized.

The electrochemical reaction kinetics of the porous core–shell structured Ni/NiO anode for Li ion battery application is systematically investigated by monitoring the electrochemical impedance evolution for the first time. The electrochemical impedance under prescribed condition is measured by using impedance spectroscopy in equilibrium conditions at various depths of discharge (DOD) during charge–discharge cycles. The Nyquist plots of the binder-free porous Ni/NiO electrode are interpreted with a selective equivalent circuit composed of solution resistance, solid electrolyte interphase (SEI) film, charge transfer and solid state diffusion. The impedance analysis shows that the change of charge transfer resistance is the main contribution to the total resistance change during discharge, and the surface configuration of the obtained electrode may experience significant change during the first two cycles. Meanwhile, the increase of internal resistance reduced the utilization efficiency of the active material may be another convincing factor to increase the irreversible capacity. In addition, the impedance evolution of the as-prepared electrode during charge–discharge cycles reveals that the slow growth of the SEI film is responsible for the capacity fading after long term cycling. As a result, several strategies are summarized to optimize the electrochemical performances of transition metal oxide anodes for lithium ion batteries.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , ,