Article ID Journal Published Year Pages File Type
1842866 Nuclear Physics B 2006 13 Pages PDF
Abstract

We argue, using methods taken from the theory of noiseless subsystems in quantum information theory, that the quantum states associated with a Schwarzschild black hole live in the restricted subspace of the Hilbert space of horizon boundary states in which all punctures are equal. Consequently, one value of the Immirzi parameter matches both the Hawking value for the entropy and the quasi normal mode spectrum of the Schwarzschild black hole. The method of noiseless subsystems allows us to understand, in this example and more generally, how symmetries, which take physical states to physical states, can emerge from a diffeomorphism invariant formulation of quantum gravity.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,