Article ID Journal Published Year Pages File Type
1842973 Nuclear Physics B 2015 15 Pages PDF
Abstract

The concept of point-like “jump” defects is investigated in the context of affine Toda field theories. The Hamiltonian formulation is employed for the analysis of the problem. The issue is also addressed when integrable boundary conditions ruled by the classical twisted Yangian are present. In both periodic and boundary cases explicit expressions of conserved quantities as well as the relevant Lax pairs and sewing conditions are extracted. It is also observed that in the case of the twisted Yangian the bulk behavior is not affected by the presence of the boundaries.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
,