Article ID Journal Published Year Pages File Type
1843007 Nuclear Physics B 2014 35 Pages PDF
Abstract

We consider the U(1)U(1) Chern–Simons gauge theory defined in a general closed oriented 3-manifold M  ; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The non-perturbative path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent U(1)U(1) principal bundles over M; the different sectors of configuration space are labelled by the elements of the first homology group of M and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the non-perturbative contributions to the mean values. The functional integration is carried out in any 3-manifold M, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin–Turaev surgery invariants.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,