Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1843094 | Nuclear Physics B | 2011 | 16 Pages |
Abstract
The ageing algebra is a local dynamical symmetry of many ageing systems, far from equilibrium, and with a dynamical exponent z=2. Here, new representations for an integer dynamical exponent z=n are constructed, which act non-locally on the physical scaling operators. The new mathematical mechanism which makes the infinitesimal generators of the ageing algebra dynamical symmetries, is explicitly discussed for an n-dependent family of linear equations of motion for the order-parameter. Finite transformations are derived through the exponentiation of the infinitesimal generators and it is proposed to interpret them in terms of the transformation of distributions of spatio-temporal coordinates. The two-point functions which transform co-variantly under the new representations are computed, which quite distinct forms for n even and n odd. Depending on the sign of the dimensionful mass parameter, the two-point scaling functions either decay monotonously or in an oscillatory way towards zero.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematical Physics
Authors
Malte Henkel, Stoimen Stoimenov,