Article ID Journal Published Year Pages File Type
1843499 Nuclear Physics B 2006 26 Pages PDF
Abstract
We find explicit expressions for two first finite size corrections to the distribution of Bethe roots, the asymptotics of energy and high conserved charges in the sl(2) quantum Heisenberg spin chain of length J in the thermodynamical limit J→∞ for low lying states with energies E∼1/J. This limit was recently studied in the context of integrability in perturbative N=4 super-Yang-Mills theory. We applied the double scaling technique to Baxter equation, similarly to the one used for large random matrices near the edge of the eigenvalue distribution. The positions of Bethe roots are described near the edge by zeros of Airy function. Our method can be generalized to any order in 1/J. It should also work for other quantum integrable models.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,