Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1844368 | Nuclear Physics B | 2007 | 29 Pages |
Abstract
Motivated by a careful analysis of the Laplacian on the supergroup SU(2|1) we formulate a proposal for the state space of the SU(2|1) WZNW model. We then use properties of slË(2|1) characters to compute the partition function of the theory. In the special case of level k=1 the latter is found to agree with the properly regularized partition function for the continuum limit of the integrable sl(2|1) 3-3¯ super-spin chain. Some general conclusions applicable to other WZNW models (in particular the case k=â1/2) are also drawn.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematical Physics
Authors
Hubert Saleur, Volker Schomerus,