Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1850790 | Physics Letters B | 2015 | 4 Pages |
Sum rules provide useful insights into transition strength functions and are often expressed as expectation values of an operator. In this letter I demonstrate that non-energy-weighted transition sum rules have strong secular dependences on the energy of the initial state. Such non-trivial systematics have consequences: the simplification suggested by the generalized Brink–Axel hypothesis, for example, does not hold for most cases, though it weakly holds in at least some cases for electric dipole transitions. Furthermore, I show the systematics can be understood through spectral distribution theory, calculated via traces of operators and of products of operators. Seen through this lens, violation of the generalized Brink–Axel hypothesis is unsurprising: one expects sum rules to evolve with excitation energy. Furthermore, to lowest order the slope of the secular evolution can be traced to a component of the Hamiltonian being positive (repulsive) or negative (attractive).