Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1851914 | Physics Letters B | 2010 | 7 Pages |
Abstract
We show how the constant curvature spacetimes of 3d gravity and the associated symmetry algebras can be derived from a single quantum deformation of the 3d Lorentz algebra sl(2,R). We investigate the classical Drinfel'd double of a “hybrid” deformation of sl(2,R) that depends on two parameters (η,z). With an appropriate choice of basis and real structure, this Drinfel'd double agrees with the 3d anti-de Sitter algebra. The deformation parameter η is related to the cosmological constant, while z is identified with the inverse of the speed of light and defines the signature of the metric. We generalise this result to de Sitter space, the three-sphere and 3d hyperbolic space through analytic continuation in η and z; we also investigate the limits of vanishing η and z, which yield the flat spacetimes (Minkowski and Euclidean spaces) and Newtonian models, respectively.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Nuclear and High Energy Physics
Authors
Angel Ballesteros, Francisco J. Herranz, Catherine Meusburger,