Article ID Journal Published Year Pages File Type
1852185 Physics Letters B 2008 5 Pages PDF
Abstract
We show that the recent tunneling formulas for black hole radiation in static, spherically symmetric spacetimes follow as a consequence of the first law of black hole thermodynamics and the area-entropy relation based on the radiation temperature. A tunneling formula results even if the radiation temperature is different from the one originally derived by Hawking and this is discussed in the context of the recent factor of 2 problem. In particular, it is shown that if the radiation temperature is higher than the Hawking temperature by a factor of two, thermodynamics then leads to a tunneling formula which is exactly the one recently found to be canonically invariant.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Nuclear and High Energy Physics
Authors
,