Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1853140 | Physics Letters B | 2014 | 4 Pages |
In the fat brane model, also known as the split fermion model, it is assumed that leptons and baryons live in different hypersurfaces of a thick brane in order to explain the proton stability without invoking any symmetry. It turns out that, in the presence of a gravity source M, particles will see different four-dimensional (4D) geometries and hence, from the point of view of 4D-observers, the equivalence principle will be violated. As a consequence, we show that a hydrogen atom in the gravitational field of M will acquire a radial electric dipole. This effect is regulated by the Hamiltonian Hd=−μA⋅δrHd=−μA⋅δr, which is the gravitational analog of the Stark Hamiltonian, where the electric field is replaced by the tidal acceleration A due to the split of fermions in the brane and the atomic reduced mass μ substitutes the electric charge.