Article ID Journal Published Year Pages File Type
1853538 Physics Letters B 2008 5 Pages PDF
Abstract
We construct the propagator for a free fermionic unparticle field from basic considerations of scale and Lorentz invariance. The propagator is fixed up to a normalization factor which is required to recover the result of a free massless fermion field in the canonical limit of the scaling dimension. Two new features appear compared to the bosonic case. The propagator contains both γ and non-γ terms, and there is a relative phase of π/2 between the two in the time-like regime for arbitrary scaling dimension. This should result in additional interference effects on top of the one known in the bosonic case. The non-γ term can mediate chirality flipped transitions that are not suppressed by a light fermion mass but are enhanced by a large bosonic mass in loops, compared to the pure particle case. We employ this last feature to set stringent bounds on the Yukawa couplings between a fermionic unparticle and an ordinary fermion through electromagnetic dipole moments and radiative decays of light fermions.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Nuclear and High Energy Physics
Authors
,