Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1853548 | Physics Letters B | 2008 | 6 Pages |
It has been suggested that energetic photons propagating in vacuo should experience a non-trivial refractive index due to the foamy structure of space–time induced by quantum-gravitational fluctuations. The sensitivity of recent astrophysical observations, particularly of AGN Mk501 by the MAGIC Collaboration, approaches the Planck scale for a refractive index depending linearly on the photon energy. We present here a new derivation of this quantum-gravitational vacuum refraction index, based on a stringy analogue of the interaction of a photon with internal degrees of freedom in a conventional medium. We model the space–time foam as a gas of D-particles in the bulk space–time of a higher-dimensional cosmology where the observable Universe is a D3-brane. The interaction of an open string representing a photon with a D-particle stretches and excites the string, which subsequently decays and re-emits the photon with a time delay that increases linearly with the photon energy and is related to stringy uncertainty principles. We relate this derivation to other descriptions of the quantum-gravitational refractive index in vacuo.