Article ID Journal Published Year Pages File Type
1854475 Annals of Physics 2016 15 Pages PDF
Abstract
The current-current correlation function is a useful concept in the theory of electron transport in homogeneous solids. The finite-temperature conductivity tensor as well as Anderson's localization length can be computed entirely from this correlation function. Based on the critical behavior of these two physical quantities near the plateau-insulator or plateau-plateau transitions in the integer quantum Hall effect, we derive an asymptotic formula for the current-current correlation function, which enables us to make several theoretical predictions about its generic behavior. For the disordered Hofstadter model, we employ numerical simulations to map the current-current correlation function, obtain its asymptotic form near a critical point and confirm the theoretical predictions.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, ,