Article ID Journal Published Year Pages File Type
1854814 Annals of Physics 2012 17 Pages PDF
Abstract

Employing the Foldy–Wouthuysen transformation, it is demonstrated straightforwardly that the first and second Chern numbers are equal to the coefficients of the 2+1 and 4+1 dimensional Chern–Simons actions which are generated by the massive Dirac fermions coupled to the Abelian gauge fields. A topological insulator model in 2+1 dimensions is discussed and by means of a dimensional reduction approach the 1+1 dimensional descendant of the 2+1 dimensional Chern–Simons theory is presented. Field strength of the Berry gauge field corresponding to the 4+1 dimensional Dirac theory is explicitly derived through the Foldy–Wouthuysen transformation. Acquainted with it, the second Chern numbers are calculated for specific choices of the integration domain. A method is proposed to obtain 3+1 and 2+1 dimensional descendants of the effective field theory of the 4+1 dimensional time reversal invariant topological insulator theory. Inspired by the spin Hall effect in graphene, a hypothetical model of the time reversal invariant spin Hall insulator in 3+1 dimensions is proposed.

► Shown that the Chern numbers and the coefficients of effective actions are equal. ► A new method of dimensional reduction for topological insulators is introduced. ► A model for time reversal invariant spin Hall effect in 3+1 dimensions is proposed.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, , ,