Article ID Journal Published Year Pages File Type
1855026 Annals of Physics 2012 19 Pages PDF
Abstract

In this paper we explore the asymptotic statistics of a general model of rank distributions in the large-ensemble limit; the construction of the general model is motivated by recent empirical studies of rank distributions. Applying Lorenzian, oligarchic, and Heapsian asymptotic analyses we establish a comprehensive set of closed-form results linking together rank distributions, probability distributions, oligarchy sizes, and innovation rates. In particular, the general results reveal the fundamental underlying connections between Zipf’s law, Pareto’s law, and Heaps’ law—three elemental empirical power-laws that are ubiquitously observed in the sciences.

► The large-ensemble asymptotic statistics of rank distributions are explored. ► Lorenzian, oligarchic, and Heapsian asymptotic analyses are applied. ► Associated oligarchy sizes and induced innovation rates are analyzed. ► General elemental statistical connections are established. ► The underlying connections between Zipf’s, Pareto’s and Heaps’ laws are unveiled.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, ,