Article ID Journal Published Year Pages File Type
185605 Electrochimica Acta 2014 8 Pages PDF
Abstract

Core-shell structured poly(3,4-ethylenedioxythiophene)/multi-walled carbon nanotubes (PEDOT/MWCNTs) nanofibers were synthesized through an interfacial polymerization technique. The interfacial polymerization at a liquid-liquid interface allowed PEDOT to grow uniformly on the surface of MWCNTs due to the presence of π-π interactions between PEDOT and MWCNTs walls. The morphology, structure and composition of the as-prepared PEDOT/MWCNTs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR). In addition, the electrocatalytic properties of PEDOT/MWCNTs toward redox reactions of magnolol, a widely used traditional Chinese medicine, were systematically investigated. The results showed that the PEDOT/MWCNTs nanofibers exhibited a distinctly higher activity for the detection of magnolol compared with those of pure MWCNTs and PEDOT. The remarkably enhanced activity for the nanofibers can be attributed to the unique configuration and synergistic contribution between PEDOT and MWCNTs. The presented method is a general, facile and green approach for the synthesis of polymer/CNTs nanofibers, which is significant for the development of high performance electrocatalysts for biosensing and fuel cell applications.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , , ,