Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1856124 | Annals of Physics | 2014 | 35 Pages |
We analyze the motion of quantum vortices in a two-dimensional spinless superfluid within Popov’s hydrodynamic description. In the long healing length limit (where a large number of particles are inside the vortex core) the superfluid dynamics is determined by saddle points of Popov’s action, which, in particular, allows for weak solutions of the Gross–Pitaevskii equation. We solve the resulting equations of motion for a vortex moving with respect to the superfluid and find the reconstruction of the vortex core to be a non-analytic function of the force applied on the vortex. This response produces an anomalously large dipole moment of the vortex and, as a result, the spectrum associated with the vortex motion exhibits narrow resonances lying within the phonon part of the spectrum, contrary to traditional view.