Article ID Journal Published Year Pages File Type
1856195 Annals of Physics 2012 9 Pages PDF
Abstract

The system–environment dynamics of noninertial systems is investigated. It is shown that for the amplitude damping channel: (i) the biggest difference between the decoherence effect and the Unruh radiation on the dynamics of the entanglement is that the former only leads to entanglement transfer in the whole system, but the latter damages all types of entanglement; (ii) the system–environment entanglement increases and then declines, while the environment–environment entanglement always increases as the decay parameter pp increases; and (iii) the thermal fields generated by the Unruh effect can promote the sudden death of entanglement between the subsystems while postponing the sudden birth of entanglement between the environments. It is also found that there are no system–environment and environment–environment entanglements when the system is coupled with the phase damping environment.

► The system–environment dynamics of noninertial systems is investigated. ► The roles of decoherence and Unruh effect on dynamics of entanglement are very different. ► Unruh effect promotes the sudden death of entanglement between the subsystems. ► But it postpones the sudden birth of entanglement between the environments. ► No system–reservoir and reservoir–reservoir entanglement for phase damping channel.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, ,