Article ID Journal Published Year Pages File Type
1859189 Physics Letters A 2014 7 Pages PDF
Abstract

The Wigner's pseudo-particle formalism has been generalized to describe quantum dynamics of relativistic particle in external potential field. As a simplest application of the developed formalism the time evolution of the 1D relativistic quantum harmonic oscillator been considered. Due to the complex structure of the evolution equation for Wigner function, the only numerical treatment is possible by combining Monte Carlo and molecular dynamics methods. Relativistic dynamics results in appearance of the new physical effects as opposed to non-relativistic case. Interesting is the complete changing of the shape of the momentum and coordinate distribution functions as well as formation of ‘unexpected’ protuberances. To analyze the influence of relativistic effects on average values of quantum operators, the dependencies on time of average momentum, position, their dispersions and energy have been compared for the non-relativistic and relativistic dynamics.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, ,