Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1860121 | Physics Letters A | 2010 | 7 Pages |
Abstract
Two new families of completely integrable perturbations of the N-dimensional isotropic harmonic oscillator Hamiltonian are presented. Such perturbations depend on arbitrary functions and N free parameters and their integrals of motion are explicitly constructed by making use of an underlying h6h6-coalgebra symmetry. Several known integrable Hamiltonians in low dimensions are obtained as particular specializations of the general results here presented. An alternative route for the integrability of all these systems is provided by a suitable canonical transformation which, in turn, opens the possibility of adding (N−1)(N−1) ‘Rosochatius’ terms that preserve the complete integrability of all these models.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Physics and Astronomy (General)
Authors
Ángel Ballesteros, Alfonso Blasco,