Article ID Journal Published Year Pages File Type
1860361 Physics Letters A 2010 5 Pages PDF
Abstract
The momentum dependence of the low energy quasiparticle spectrum and the related Bogoliubov angle in cuprate superconductors are studied within the kinetic energy driven superconducting mechanism. By calculation of the ratio of the low energy quasiparticle spectra at positive and negative energies, it is shown that the Bogoliubov angle increases monotonically across the Fermi crossing point. The results also show that the superconducting coherence of the low energy quasiparticle peak is well described by a simple d-wave Bardeen-Cooper-Schrieffer formalism, although the pairing mechanism is driven by the kinetic energy by exchanging spin excitations.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, , , ,