Article ID Journal Published Year Pages File Type
1860709 Physics Letters A 2009 6 Pages PDF
Abstract
We revisit the theme of non-nearest-neighbor interactions in nonlinear dynamical lattices, in the prototypical setting of the discrete nonlinear Schrödinger equation. Our approach offers a systematic way of analyzing the existence and stability of solutions of the system near the so-called anti-continuum limit of zero coupling. This affords us a number of analytical insights such as the fact that, for instance, next-nearest-neighbor interactions allow for solutions with nontrivial phase structure in infinite one-dimensional lattices; in the case of purely nearest-neighbor interactions, such phase structure is disallowed. On the other hand, such non-nearest-neighbor interactions can critically affect the stability of unstable structures, such as topological charge S=2 discrete vortices. These analytical predictions are corroborated by numerical bifurcation and stability computations.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
,