Article ID Journal Published Year Pages File Type
1860834 Physics Letters A 2015 7 Pages PDF
Abstract
We consider a system of coupled Gross-Pitaevskii (GP) equations describing a binary quasi-one-dimensional Bose-Einstein condensate (BEC) with intrinsic time-dependent attractive interactions, placed in a time-dependent expulsive parabolic potential, in a special case when the system is integrable (a deformed Manakov's system). Since the nonlinearity in the integrable system which represents binary attractive interactions exponentially decays with time, solitons are also subject to decay. Nevertheless, it is shown that the robustness of bright solitons can be enhanced in this system, making their respective lifetime longer, by matching the time dependence of the interaction strength (adjusted with the help of the Feshbach-resonance management) to the time modulation of the strength of the parabolic potential. The analytical results, and their stability, are corroborated by numerical simulations. In particular, we demonstrate that the addition of random noise does not impact the stability of the solitons.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, , , , ,