Article ID Journal Published Year Pages File Type
1861799 Physics Letters A 2009 6 Pages PDF
Abstract

Homoclinic and heteroclinic solutions are two important concepts that are used to investigate the complex properties of nonlinear evolutionary equations. In this Letter, we perform hyperbolic and linear stability analysis, and prove the existence of homoclinic and heteroclinic solutions for two-dimensional cubic Ginzburg–Landau equation with periodic boundary condition and even constraint. Then, using the Hirota's bilinear transformation, we find the closed-form homoclinic and heteroclinic solutions. Moreover, we find that the homoclinic tubes and two families of heteroclinic solutions are asymptotic to a periodic cycle in one dimension.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, , ,