Article ID Journal Published Year Pages File Type
1861990 Physics Letters A 2009 4 Pages PDF
Abstract

Sixfold symmetrical Mg-doped CdS nanowires have been fabricated through high temperature vapor–solid deposition process. The experimental study of the temperature-dependent photoluminescence properties of the Mg-doped CdS nanowires from 10 K to 300 K was reported. The Mg-doped CdS nanowires show intensive cyan-color light emission properties from 10 K to 200 K. The results indicate that there are two strong peaks situated at the green emission (at 528 nm) and red emission (at 655–695 nm), and two weak UV emission peaks at 378 nm and 417 nm, respectively. The ratio of green to red emission was decreased with temperature increased. When the temperature is above 200 K, the orange-color light was observed from the Mg-doped CdS nanowires. Therefore, the intensive emission properties of the Mg-doped CdS nanowires have a great potential for use as nanoscaled optoelectronic intensive light emitters under different temperature.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, ,