Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1862316 | Physics Letters A | 2007 | 9 Pages |
Within the framework of the kinetic energy driven superconductivity, we study the electronic structure of cuprate superconductors. It is shown that the spectral weight of the electron spectrum in the antinodal point of the Brillouin zone decreases as the temperature is increased. With increasing the doping concentration, this spectral weigh increases, while the position of the sharp superconducting quasiparticle peak moves to the Fermi energy. In analogy to the normal-state case, the superconducting quasiparticles around the antinodal point disperse very weakly with momentum. Our results also show that the striking behavior of the superconducting coherence of the quasiparticle peaks is intriguingly related to the strong coupling between the superconducting quasiparticles and collective magnetic excitations.