Article ID Journal Published Year Pages File Type
1862644 Physics Letters A 2008 4 Pages PDF
Abstract

This Letter presents a theoretical analysis to the fracture behavior of a large single domain YBCO superconductor under thermal stress based on the two-dimensional theory of anisotropic thermoelasticity, the coupled finite element and infinite element numerical method. The thermal stress intensity factors are obtained due to a uniform heat flux by a line crack in a generally half plane superconductor. It is found that the thermal stress intensity factors decrease with the decrease of temperature, and while the longer the crack length is, the larger the stress intensity factors. Additionally, the J-integral at the crack tip is also investigated, a similar behavior to the thermal stress intensity factors is found. These results are benefit for us to understand the fracture mechanism of superconductor both in theory and application.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, ,