Article ID Journal Published Year Pages File Type
1862724 Physics Letters A 2008 4 Pages PDF
Abstract
We suggest that random matrix theory applied to a matrix of lengths of classical trajectories can be used in classical billiards to distinguish chaotic from non-chaotic behavior. We consider in 2D the integrable circular and rectangular billiard, the chaotic cardioid, Sinai and stadium billiard as well as mixed billiards from the Limaçon/Robnik family. From the spectrum of the length matrix we compute the level spacing distribution, the spectral auto-correlation and spectral rigidity. We observe non-generic (Dirac comb) behavior in the integrable case and Wignerian behavior in the chaotic case. For the Robnik billiard close to the circle the distribution approaches a Poissonian distribution. The length matrix elements of chaotic billiards display approximate GOE behavior. Our findings provide evidence for universality of level fluctuations-known from quantum chaos-to hold also in classical physics.
Keywords
Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, , , , , , , , , , ,