Article ID Journal Published Year Pages File Type
1863982 Physics Letters A 2007 5 Pages PDF
Abstract

The joint eigenvalue distributions of random-matrix ensembles are derived by applying the principle maximum entropy to the Rényi, Abe and Kaniadakis entropies. While the Rényi entropy produces essentially the same matrix-element distributions as the previously obtained expression by using the Tsallis entropy, and the Abe entropy does not lead to a closed form expression, the Kaniadakis entropy leads to a new generalized form of the Wigner surmise that describes a transition of the spacing distribution from chaos to order. This expression is compared with the corresponding expression obtained by assuming Tsallis' entropy as well as the results of a previous numerical experiment.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
,