Article ID Journal Published Year Pages File Type
1864088 Physics Letters A 2007 5 Pages PDF
Abstract

The effects of intradot electron–electron interaction on the photon-assisted Andreev tunneling of a superconductor/carbon-nanotube/superconductor system are studied by using nonequilibrium Green's function technique. The inverse supercurrent reflecting the π-junction transition emerges in the spin-split energy-levels regime polarized by the Coulomb interaction. For the positive tunneling case, the supercurrent reaches its maximum when the spin-degenerate energy-levels are nearest to the Fermi surface. Conversely, for the negative tunneling case, the supercurrent reaches its maximum when two split energy-levels are symmetric with respect of the Fermi surface. The sign and the amplitude of the Andreev tunneling depend distinctly on the energy-level spacing tuned by photon-assisted tunneling. In order to fully understand the transport characteristics, the current-carrying density of states are investigated, which clearly shows the enhancement, suppression or even reversion of the supercurrent.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, , , ,