Article ID Journal Published Year Pages File Type
1864795 Physics Letters A 2008 7 Pages PDF
Abstract
We study the electronic states of a mesoscopic system whose Hamiltonian has a complicated static multi-level energy structure and undergoes periodic evolution in time. By using the Floquet theory, we derive the quasienergies, the Floquet states, and the geometrical phase. It is shown numerically that the geometrical phase is strongly dependent on the evolution circuits in the parameter space and on the evolution frequency of the varying Hamiltonian. In some cases the nonadiabatic geometric phases can exhibit chaotic behavior. We also show a trend of phase compensation in pairs of states which could restore the phase coherence if the pairing occurs.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, , ,