Article ID Journal Published Year Pages File Type
1865588 Physics Letters A 2006 5 Pages PDF
Abstract

We combine Creutz energy conservation with Kawasaki spin exchange to simulate the microcanonical dynamics of a system of interacting particles. Relaxation occurs via Glauber spin-flip activation using a self-consistent temperature. Heterogeneity in the dynamics comes from finite-size constraints on the spin exchange that yield a distribution of correlated regions. The simulation produces a high-frequency response that can be identified with the boson peak, and a lower-frequency peak that contains non-Debye relaxation and non-Arrhenius activation, similar to the primary response of supercooled liquids.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, ,