Article ID Journal Published Year Pages File Type
1865952 Physics Letters A 2008 4 Pages PDF
Abstract

The propagation of one-dimensional shock-like waves (SLWs) in a dissipative quantum magnetoplasma medium is studied. A quantum magnetohydrodynamic (QMHD) model is used to take into account the effects of quantum force associated with the Bohm potential and the pressure-like spin force for electrons. It is shown that the nonlinear evolution equation [Korteweg–de-Vries–Burger (KdVB)], which describes the dynamics of small but finite amplitude magnetosonic waves (MSWs) (where the dissipation is provided by the plasma resistivity) exhibits both oscillatory and monotonic shock-like perturbations (SLPs) by the effects of collective tunneling and spin alignment. Both the quantum and spin force significantly modify the shock-like structures and the strength of SLPs. The theoretical results could be of important for strongly magnetized astrophysical (e.g., pulsars, magnetars) plasmas.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, ,