Article ID Journal Published Year Pages File Type
1865957 Physics Letters A 2008 4 Pages PDF
Abstract

We use the two-component drift-diffusion model to study the spin density polarization in an organic semiconductor system under an external electric-field. The spin-dependent electrical-conductivity, the drift spin current and the diffusion spin current in the organic semiconductor are self-consistently derived. It is found that the spin current could be strongly influenced by the spin-dependent electrical-conductivity. When the spin-dependent conductivity varies from 0 to 0.5%, the spin current presents a very pronounced change almost three orders in magnitude. The electric-field could effectively enhance the spin-dependent electrical-conductivity and the spin current. Furthermore, the spin-dependent electrical-conductivity is position sensitive, but its position sensitivity goes down while electric-field is larger than about 1 mV/μm.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, , ,