Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1867344 | Physics Letters A | 2010 | 4 Pages |
Abstract
The entanglement in many-electron states is investigated using a global entanglement measure, viz. average site mixedness. We have examined metallic states of noninteracting electrons, Nagaoka and Gutzwiller states of strongly-correlated electrons, and superconducting states. Uncorrelated metallic states at half filling seem to maximize entanglement, as these states optimize the number of holes, the number of doubly-occupied sites. Entanglement is calculated explicitly for Gutzwiller-projected many-electron states in one dimension, which have less entanglement as double occupancy is inhibited in these states. Entanglement in superconducting states, which tend to promote double occupancy, is calculated as a function of the energy gap, and found to be lower than the metallic state entanglement. There is a possibility of a regime with a nonzero single-site concurrence depending on the energy gap.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Physics and Astronomy (General)
Authors
V. Subrahmanyam,