Article ID Journal Published Year Pages File Type
1867868 Physics Letters A 2008 5 Pages PDF
Abstract
The room-temperature ferromagnetism demonstrated by Co-doped TiO2 films remains a challenge to our understanding, notwithstanding intensive experimental and theoretical investigations. We have calculated the binding energy and spin-polarization of Co atoms doped in the rutile TiO2 (110) surface using first-principles method, aiming to elucidate the relationship between structure and magnetism of Co-doped TiO2 films. In a defect-free surface the binding energy of Co substituting for Ti reduces slightly with the depth into the surface, suggesting a very minor Co depletion near the surface. More interestingly, the stability of ferromagnetic coupling over anti-ferromagnetic coupling of Co atoms decreases rapidly when it goes from surface to the bulk region. The residual ferromagnetism in the surface will give rise to a non-vanishing average magnetic moment of the thin film. The calculated pairing energy of Co is 0.12 eV/Co in the surface layer and 0.20 eV/Co in the middle layer of the film, an indication that Co atoms have a tendency to aggregate in both regions and that pairing will not modify the Co concentration in the direction vertical to the surface.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, , , , ,