Article ID Journal Published Year Pages File Type
1868304 Physics Letters A 2006 4 Pages PDF
Abstract

Physi- or chemi-sorption of hydrogen in solid materials offers a viable medium for hydrogen storage since the concentration of hydrogen can exceed that in its gaseous form at high compression. Due to their unique architecture, carbon nanotubes are potentially an excellent carbon-based adsorbent for hydrogen. In this work, we report direct measurements of hydrogen adsorption using elastic recoil detection analysis in single-walled, double-walled, and multi-walled nanotubes, as well as carbon nanofibers. Results are presented for hydrogen adsorption treatment at ambient temperature and above, where chemical rather than physical adsorption is anticipated. The results show that the concentration of hydrogen in all samples over the range of conditions investigated is below 1 wt.%, which is well below that required for a viable storage media.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, , , , , , , ,