Article ID Journal Published Year Pages File Type
1870035 Physics Procedia 2015 10 Pages PDF
Abstract

The feasibility of integration of photon and neutron radiography for nondestructive detection of illicit materials was examined. The MCNP5 code was used to model a radiography system consisting of accelerator-based neutron and photon sources and the imaging detector array, with an object under scrutiny placed between them. For this examination, the objects consisted of a matrix of low-Z and high-Z materials of various shapes and density. Transmission-radiography computations were carried out using 2.5-MeV deuterium-deuterium and 14-MeV deuterium-tritium neutron sources, and a 0.3-MeV photon source. The radiography tallies for both neutron and photon sources were modeled for the same geometry of the system. The photon-to- neutron transmission ratios were determined for each pixel of the detector array and utilized to identify the presence of specific materials in the radiographic images. By focusing on the inherent difference between neutron and photon interactions, it was possible to determine the shape and material composition of complex objects present within a pallet or a shipping container. The use of a single imaging array of scintillation detectors for simultaneous measurements of fast neutrons and photons is discussed, and its function in the dual neutron/photon radiography applications is addressed.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)