Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1870600 | Physics Procedia | 2011 | 9 Pages |
A novel nonlinear statistical method of immunofluorescence data analysis is presented. The data of DNA fluorescence due to oxidative activity in neutrophils nuclei of peripheral blood is analyzed. Histograms of photon counts statistics are generated using flow cytometry method. The histograms represent the distributions of fluorescence flash frequency as functions of intensity for large populationsā¼104-105 of fluorescing cells. We have shown that these experiments present 3D-correlations of oxidative activity of DNA for full chromosomes set in cells with spatial resolution of measurements is about few nanometers in the flow direction the jet of blood. Detailed analysis showed that large-scale correlations in oxidative activity of DNA in cells are described as networks of small- worlds (complex systems with logarithmic scaling) with self own small-world networks for given donor at given time for all states of health. We observed changes in fractal networks of oxidative activity of DNA in neutrophils in vivo and during medical treatments for classification and diagnostics of pathologies for wide spectra of diseases. Our approach based on analysis of changes topology of networks (fractal dimension) at variation the scales of networks. We produce the general estimation of health status of a given donor in a form of yes/no of answers (healthy/sick) in the dependence on the sign of plus/minus in the trends change of fractal dimensions due to decreasing the scale of nets. We had noted the increasing biodiversity of neutrophils and stochastic (Brownian) character of intercellular correlations of different neutrophils in the blood of healthy donor. In the blood of sick people we observed the deterministic cell-cell correlations of neutrophils and decreasing their biodiversity.