Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1870923 | Physics Procedia | 2010 | 6 Pages |
It has been suggested that cavitation microstreaming plays a role in the therapeutic action of microbubbles driven by ultrasound, such as the sonothrombolytic and sonoporative phenomena. Microscopic particle-image velocimetry experiments are presented, showing that many different microstreaming patterns are possible around a microbubble when it is on a surface. Each pattern is associated with a particular oscillation mode of the bubble and generates a different shear stress distribution. It was found that it is possible to change the flow pattern by changing the sound frequency. Microstreaming flows around bubbles could be responsible for mixing therapeutic agents into the surrounding blood, as well as assisting sonoporative delivery of molecules across cell membranes. Appropriate tuning of the driving frequency may benefit therapies.