Article ID Journal Published Year Pages File Type
1871294 Physics Procedia 2015 4 Pages PDF
Abstract

The perspectives for the increase in the accuracy of optical frequency standards by means of the development of “nuclear clocks” – a novel frequency standard based on the nuclear transition to the long-living isomer nuclear state of thorium-229 with energy ∼7.6 eV are discussed. Theoretical estimations give a possible accuracy Δν/ν ∼1×10-20, that allows wide scope of applications for a frequency standard, from satellite navigation systems to experimental verification of the principles of the general theory of relativity. The results are presented and the future prospects for research are discussed on the measurement of the isomeric transition in the nucleus of thorium-229 and creation on its basis the frequency standard of the new generation.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)