Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1871507 | Physics Procedia | 2015 | 6 Pages |
The few products of an optical cryostat for use in microscopy in commercialapplications are generally cooled by liquid nitrogen, liquid helium or cryocoolers such as G-M cryocooler or G-M type pulse tube cryocooler (PTC). Sometimes it is not convenient to use G-M cryocooler or G-M type PTC because of its noise and big size; and in some places, liquid nitrogen, especially liquid helium, is not easily available. To overcome this limitation, an optical cryostat for use in microscopy cooled by a Stirling-type pulse tube cryocooler (SPTC) has been designed, built and tested.The refrigerator system SPTC is an important component of the optical cryostat; it has the advantages of compactness, high efficiency, and low vibration. For simplification and compactness, single-stage configuration with coaxial arrangement was employed in the developed SPTC. In order to lower the vibration, the separated configuration was adopted; its compressor and pulse tube are connected with a flexible connecting tube. At present, a lowest temperature of 20 K could be achieved. The temperature fluctuation can be controlled at ±10 mK by adjusting the input electric power to the compressor; and some considerations for further improvement will also be described in this paper.