Article ID Journal Published Year Pages File Type
1871516 Physics Procedia 2015 6 Pages PDF
Abstract

METIS is the “Mid-infrared ELT Imager and Spectrograph” for the European Extremely Large Telescope (E-ELT) that will cover the thermal/mid-infrared wavelength range from 3-14 micron. Starting from a pumped nitrogen line at 70K, it requires cryogenic cooling of detectors and optics at 40 K (1.4 W), 25 K (1.1 W), and 8 K (0.4 W). A vibration-free cooling technology for this instrument based on sorption coolers is under development at the University of Twente in collaboration with Dutch Space. We propose a sorption-based cooler with three cascaded Joule-Thomson coolers of which the sorption compressors are all heat sunk at the 70K platform. A helium-operated cooler is used to obtain the 8K level with a cooling power of 0.4 W. Here, three pre-cooling stages are used at 40K, 25K and 15K. The latter two levels are provided by a hydrogen-based cooler, whereas the 40K level is realized by a neon-based sorption cooler. Based on our space-cooler heritage, our preliminary design used sorption compressors equipped with gas-gap heat switches. These have maximum efficiency, but the gas-gap switches add significantly to the complexity of the system. Since in METIS relatively high cooling powers are required, and thus a high number of compressor cells, manufacturability is an important issue. We, therefore, developed an alternative cylindrical compressor design that uses short-pulse heating establishing a thermal wave in radial direction. This allows to omit the gas-gap heat switch. The paper discusses the adapted cell design and two METIS cooler demonstrator setups that are currently under construction.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)