Article ID Journal Published Year Pages File Type
1871713 Physics Procedia 2014 9 Pages PDF
Abstract

Laser cladding, also known as direct metal deposition, is an additive manufacturing technique for the production of freeform metallic parts. High quality parts can be created with the use of feedback control systems which stabilize the melt pool during the cladding process. Current laser cladding control systems are based on low order, empirical models of the process, which have low dynamic accuracy and limit the performance that can be achieved. In this paper, a control system based on a physical heat conduction model of the melt pool dynamics is presented. The control structure consists of a static linear state feedback control law designed using pole placement and combined with a PI controller. The controller is able to regulate the melt pool size by modulating the laser power using a number of surface temperature measurements as the feedback signal. Simulation results using a detailed finite element model show that the controller has good tracking behavior and disturbance rejection properties.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)